Monthly Archives: April 2017

How These Five Essential Oils Cool the Burning Pains of Bartonella and Lyme Disease

For people with Bartonella and Lyme disease that struggle with burning pains in their hands and feet
by Greg Lee

Do you know what music teachers say about learning to play an instrument? “Practice, practice, practice.” My daughter is learning to play the clarinet. She is doing well follow along with the notes on the music sheet. Sometimes she enjoys making hilarious squeaks and some really loud honking sounds just for fun.

How is a squeaky, loud clarinet similar to the burning pains of a Bartonella / Lyme infection?

Similar to squeaky clarinet sounds, people with Bartonella and Lyme can have “loud” burning pains in their extremities
Patients diagnosed with Bartonella and Lyme disease often report a wide variety of painful symptoms including: joint pain[1], muscle pain[2], lymph node pain, abdominal discomfort[3], and uncomfortable symptoms of polyneuropathy/nerve damage: weakness, tingling, prickling, awkward gait, and numbness[4]. One of the most urgent and often debilitating symptoms that people report is burning pain in the hands, feet and extremities[5]. Burning symptoms are often worse in the morning and may improve over time or with movement. One theory is that nerve damage is an underlying cause of these burning symptoms[6]. Looking at other illnesses with similar burning pain sensations may provide new insights into relieving these hot, painful symptoms.

In addition to Bartonella, people with a condition called erythromelalgia report similar symptoms of burning pain in their hands and feet
“Erythromelalgia is a rare condition that primarily affects the feet and, less commonly, the hands (extremities). It is characterized by intense, burning pain of affected extremities, severe redness (erythema), and increased skin temperature that may be episodic or almost continuous in nature.[7]” People with erythromelalgia reported their pain attacks being triggered by heat or exercise and relieved mainly by cooling methods[8]. A large proportion of these pain attacks often do not involve a specific trigger. An important discovery connects a specific genetic mutation with enhanced pain sensitivity in people with erythromelalgia.

The intensity of burning symptoms in erythromelalgia patients is correlated with a mutation in a gene called SCN9A
The SCN9A gene affects the functioning of sodium channel called NaV1.7[9]. This channel is a pathway for transmission of pain signals. Genetic mutations affecting NaV1.7 may blunt the ability to sense pain[10] or dramatically increase pain sensitivity[11]. Researchers are looking at tarantulas for a possible remedy for relieving the the burning pain sensations.

Green velvet tarantula venom contains a peptide that may help to reduce burning pains by affecting the NaV1.7 channel[12]
In mouse experiments, this peptide was effective a reducing the pain sensations by blocking the NaV1.7 channel. Finding and testing at tarantula-based NaV1.7 medication will likely take years to develop.

What else may help with reducing burning hand and feet pain in people with Lyme disease and Bartonella?

A compound found in essential oils also blocks the pain signals in the NaV1.7 channel
There is a compound called methyl eugenol that was effective in inhibiting nerve signals in NaV1.7 channels in a lab experiment[13]. In animal studies, this compound has demonstrated anesthetic and the ability to block pain signals[14]. This compound is approved by the FDA for use as a flavoring agent that can be directly and safely added to food[15]. Caution: rodent studies on methyl eugenol have produce cancer tumors in their livers[16]. Processing these oils into a microparticle called a liposome may increase their ability to penetrate into nerve cells to enhance pain relief[17]. All of these essential oils are classified as GRAS (generally recognized as safe) by the US FDA (Food and Drug Administration).

Burning Pain Relief Essential Oil #1: Sweet Basil
In lab studies, methyl eugenol content in basil essential oil varied from 1.5% – 78% depending upon the country of origin[18]. Turkish sweet basil had the highest content of methyl eugenol. This essential oil is classified by the FDA as GRAS[19]. In animal studies, this essential oil demonstrated analgesic effects on chronic non-inflammatory pain such as fibromyalgia[20] and the ability to block pain signals[21]. This herb has been used traditionally to treat nerve pain, convulsions and a variety of neurodegenerative disorders[22]. In addition to basil, bay laurel essential oil has pain relieving properties.

Burning Pain Relief Essential Oil #2: Bay Laurel
This essential oil has been found to contain up to 9% methyl eugenol[23]. In animal studies, this oil has demonstrated pain relieving effects[24]. In other studies, bay laurel essential oil inhibits Staphylococcus aureus and it’s biofilms[25] and Candida species and it’s biofilms[26]. Bay Laurel essential oil has FDA GRAS status[27]. In addition to bay laurel, rose essential oil also has pain relieving properties.

Burning Pain Relief Essential Oil #3: Rose
Rose essential oil may contain up to 3.5% methyl eugenol[28]. In human studies, rose essential oil provided pain relief in patients with dysmenorrhea[29] and renal colic[30]. In a lab study, rose oil demonstrated antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, and, Staphylococcus aureus[31]. Rose essential oil has FDA GRAS status[32]. Clary sage essential oil also contains methyl eugenol.

Burning Pain Relief Essential Oil #4: Clary Sage
Clary sage essential oil may contain up to 2% methyl eugenol. This oil was effective at reduce labor pains in a human study[33]. A combination of clary sage with other essential oils helped to reduce menstrual cramps[34]. In lab studies, clary sage essential oil was effective against Staphylococcus clinical strains resistant to antibiotics[35] and in combination with juniper essential oil demonstrated anti-yeast properties[36]. Clary sage is classified as FDA GRAS[37]. Lemon balm essential oil also contains methyl eugenol.

Burning Pain Relief Essential Oil #5: Lemon Balm
Lemon balm essential oil may contain up to 1% methyl eugenol[38]. In animal studies, this essential oil was effective at reducing neuropathy pain[39] and inflammation[40]. Lemon balm oil is also effective against Candida albicans[41], herpes simplex virus type 1 and type 2[42], cutaneous leishmaniosis[43], Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, and Listeria monocytogenes[44] in lab studies. Lemon balm essential oil is classified at FDA GRAS[45]. Multiple essential oils may help with reducing how patients feel burning pain by disrupting signals transmitted along the NaV1.7 pathway.

These five essential oils may help to reduce burning pain caused by Bartonella and Lyme disease
People with Lyme disease and Bartonella and Lyme disease that report burning pains in their hands, feet, and extremities may be helped by research into a similar painful illness called erythromelalgia. Just like getting a child to play their instrument at a harmonious level, these essential oils contain a compound called methyl eugenol that may help to reduce the intensity of burning pains by blocking the pain signals along the NaV1.7 pathway. Some of these remedies may also help with reducing inflammation and other types of pain. Processing these essential oils into microparticle liposome remedies may enhance their ability to penetrate inside of nerve cells and improve pain relief. Since formulating essential oils into liposomal remedies requires special knowledge and equipment, work with a Lyme / liposomal literate natural remedy practitioner to develop a customized, safe, and effective treatment plan for your condition.

– Greg

Next step: Come to the Getting Rid of Lyme Disease evening lecture on Monday May 1st at 6pm in Frederick, Maryland to learn more about essential oils, herbs, and treatments for healing Bartonella and Lyme disease burning pain, co-infections, and inflammation symptoms.

https://goodbyelyme.com/events/get_rid_lyme

Also learn about effective remedies and treatments for relieving persistent symptoms of Lyme and co-infections including: cold laser, Frequency Specific Microcurrent, cupping, LED therapy, moxabustion, acupuncture, liposomal herbs, essential oils, bee venom, and more!

P.S. Do you have experiences where remedies or treatments helped you to reduce burning pains from Bartonella and Lyme disease? Tell us about it.


[1] Arvikar, Sheila L., and Allen C. Steere. “Diagnosis and Treatment of Lyme Arthritis.” Infectious Disease Clinics of North America 29, no. 2 (June 2015): 269–80. doi:10.1016/j.idc.2015.02.004. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4443866/

[2] Garakani, Amir, and Andrew G. Mitton. “New-Onset Panic, Depression with Suicidal Thoughts, and Somatic Symptoms in a Patient with a History of Lyme Disease.” Case Reports in Psychiatry 2015 (2015): 457947. doi:10.1155/2015/457947.  https://www.ncbi.nlm.nih.gov/pubmed/25922779

[3] Mazur-Melewska, Katarzyna, Anna Mania, Paweł Kemnitz, Magdalena Figlerowicz, and Wojciech Służewski. “Cat-Scratch Disease: A Wide Spectrum of Clinical Pictures.” Advances in Dermatology and Allergology/Postȩpy Dermatologii I Alergologii 32, no. 3 (June 2015): 216–20. doi:10.5114/pdia.2014.44014.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495109/

[4] “Polyneuropathy.” Wikipedia, April 10, 2017. https://en.wikipedia.org/w/index.php?title=Polyneuropathy&oldid=774727139.

[5] Horowitz, Richard. Why Can’t I Get Better? Solving the Mystery of Lyme and Chronic Disease. Macmillan, 2013.  P. 75.

[6] “Lyme and Tick-Borne Diseases Research Center.” Accessed April 29, 2017. https://asp.cumc.columbia.edu/lymedisease/askthedr/for_pt/displayanswer1-lyme.asp?Departments=LymeDisease&Controlnumber=4824.

[7] “Erythromelalgia – NORD (National Organization for Rare Disorders).” NORD (National Organization for Rare Disorders). Accessed April 29, 2017. https://rarediseases.org/rare-diseases/erythromelalgia/.

[8] McDonnell, Aoibhinn, Betsy Schulman, Zahid Ali, Sulayman D. Dib-Hajj, Fiona Brock, Sonia Cobain, Tina Mainka, Jan Vollert, Sanela Tarabar, and Stephen G. Waxman. “Inherited Erythromelalgia due to Mutations in SCN9A: Natural History, Clinical Phenotype and Somatosensory Profile.” Brain: A Journal of Neurology 139, no. Pt 4 (April 2016): 1052–65. doi:10.1093/brain/aww007.  https://www.ncbi.nlm.nih.gov/pubmed/26920677

[9] Kim, David Ta, Elsa Rossignol, Kinda Najem, and Luis H. Ospina. “Bilateral Congenital Corneal Anesthesia in a Patient with SCN9A Mutation, Confirmed Primary Erythromelalgia, and Paroxysmal Extreme Pain Disorder.” Journal of AAPOS: The Official Publication of the American Association for Pediatric Ophthalmology and Strabismus 19, no. 5 (October 2015): 478–79. doi:10.1016/j.jaapos.2015.05.015.

[10] Remacle, Albert G., Sonu Kumar, Khatereh Motamedchaboki, Piotr Cieplak, Swathi Hullugundi, Jennifer Dolkas, Veronica I. Shubayev, and Alex Y. Strongin. “Matrix Metalloproteinase (MMP) Proteolysis of the Extracellular Loop of Voltage-Gated Sodium Channels and Potential Alterations in Pain Signaling.” The Journal of Biological Chemistry 290, no. 38 (September 18, 2015): 22939–44. doi:10.1074/jbc.C115.671107.

[11] Levinson, Simon R., Songjiang Luo, and Michael A. Henry. “THE ROLE OF SODIUM CHANNELS IN CHRONIC PAIN.” Muscle & Nerve 46, no. 2 (August 2012): 155–65. doi:10.1002/mus.23314.

[12] Flinspach, M., Q. Xu, A. D. Piekarz, R. Fellows, R. Hagan, A. Gibbs, Y. Liu, et al. “Insensitivity to Pain Induced by a Potent Selective Closed-State Nav1.7 Inhibitor.” Scientific Reports 7 (January 3, 2017): 39662. doi:10.1038/srep39662.

[13] Wang, Ze-Jun, Boris Tabakoff, Simon R Levinson, and Thomas Heinbockel. “Inhibition of Nav1.7 Channels by Methyl Eugenol as a Mechanism Underlying Its Antinociceptive and Anesthetic Actions.” Acta Pharmacologica Sinica 36, no. 7 (July 2015): 791–99. doi:10.1038/aps.2015.26.  https://www.ncbi.nlm.nih.gov/pubmed/26051112

[14] Dallmeier, K., and E. A. Carlini. “Anesthetic, Hypothermic, Myorelaxant and Anticonvulsant Effects of Synthetic Eugenol Derivatives and Natural Analogues.” Pharmacology 22, no. 2 (1981): 113–27.  https://www.ncbi.nlm.nih.gov/pubmed/7208593

[15] “CFR – Code of Federal Regulations Title 21.” Accessed April 29, 2017. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?FR=172.515.

[16] Humans, IARC Working Group on the Evaluation of Carcinogenic Risk to. METHYLEUGENOL. International Agency for Research on Cancer, 2013. https://www.ncbi.nlm.nih.gov/books/NBK373178/.

[17] Tadicherla, Sujatha, and Brian Berman. “Percutaneous Dermal Drug Delivery for Local Pain Control.” Therapeutics and Clinical Risk Management 2, no. 1 (March 2006): 99–113.

[18] Pandey, Abhay Kumar, Pooja Singh, and Nijendra Nath Tripathi. “Chemistry and Bioactivities of Essential Oils of Some Ocimum Species: An Overview.” Asian Pacific Journal of Tropical Biomedicine 4, no. 9 (September 2014): 682–94. doi:10.12980/APJTB.4.2014C77.

[19] “CFR – Code of Federal Regulations Title 21.” Accessed April 30, 2017. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.20.

[20] Nascimento, Simone S., Adriano A. S. Araújo, Renan G. Brito, Mairim R. Serafini, Paula P. Menezes, Josimari M. DeSantana, Waldecy Lucca, et al. “Cyclodextrin-Complexed Ocimum Basilicum Leaves Essential Oil Increases Fos Protein Expression in the Central Nervous System and Produce an Antihyperalgesic Effect in Animal Models for Fibromyalgia.” International Journal of Molecular Sciences 16, no. 1 (December 29, 2014): 547–63. doi:10.3390/ijms16010547.

[21] Venâncio, Antônio Medeiros, Alexandre Sherlley Onofre, Amintas Figueiredo Lira, Péricles Barreto Alves, Arie Fitzgerald Blank, Angelo Roberto Antoniolli, Murilo Marchioro, Charles dos Santos Estevam, and Brancilene Santos de Araujo. “Chemical Composition, Acute Toxicity, and Antinociceptive Activity of the Essential Oil of a Plant Breeding Cultivar of Basil (Ocimum Basilicum L.).” Planta Medica 77, no. 8 (May 2011): 825–29. doi:10.1055/s-0030-1250607.

[22] Singh, Varinder, Aditi Kahol, Inder Pal Singh, Isha Saraf, and Richa Shri. “Evaluation of Anti-Amnesic Effect of Extracts of Selected Ocimum Species Using in-Vitro and in-Vivo Models.” Journal of Ethnopharmacology 193 (December 4, 2016): 490–99. doi:10.1016/j.jep.2016.10.026.

[23] “Essential Oils | Oxford Biosciences.” Accessed April 30, 2017. https://oxfordbiosciences.com/essential-oils/.

[24] Sayyah, M., G. Saroukhani, A. Peirovi, and M. Kamalinejad. “Analgesic and Anti-Inflammatory Activity of the Leaf Essential Oil of Laurus Nobilis Linn.” Phytotherapy Research: PTR 17, no. 7 (August 2003): 733–36. doi:10.1002/ptr.1197.

[25] Merghni, A., H. Marzouki, H. Hentati, M. Aouni, and M. Mastouri. “Antibacterial and Antibiofilm Activities of Laurus Nobilis L. Essential Oil against Staphylococcus Aureus Strains Associated with Oral Infections.” Pathologie-Biologie, December 4, 2015. doi:10.1016/j.patbio.2015.10.003.

[26] Peixoto, Larissa Rangel, Pedro Luiz Rosalen, Gabriela Lacet Silva Ferreira, Irlan Almeida Freires, Fabíola Galbiatti de Carvalho, Lúcio Roberto Castellano, and Ricardo Dias de Castro. “Antifungal Activity, Mode of Action and Anti-Biofilm Effects of Laurus Nobilis Linnaeus Essential Oil against Candida Spp.” Archives of Oral Biology 73 (January 2017): 179–85. doi:10.1016/j.archoralbio.2016.10.013.

[27] “CFR – Code of Federal Regulations Title 21.” Accessed April 30, 2017. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.20.

[28] “Essential Oils | Oxford Biosciences.” Accessed April 30, 2017. https://oxfordbiosciences.com/essential-oils/.

[29] Uysal, Murat, Hatice Yılmaz Doğru, Emrah Sapmaz, Ufuk Tas, Bülent Çakmak, Asker Zeki Ozsoy, Fatih Sahin, Safiye Ayan, and Mehmet Esen. “Investigating the Effect of Rose Essential Oil in Patients with Primary Dysmenorrhea.” Complementary Therapies in Clinical Practice 24 (August 2016): 45–49. doi:10.1016/j.ctcp.2016.05.002.

[30] Ayan, Murat, Ufuk Tas, Erkan Sogut, Mustafa Suren, Levent Gurbuzler, and Feridun Koyuncu. “Investigating the Effect of Aromatherapy in Patients with Renal Colic.” Journal of Alternative and Complementary Medicine (New York, N.Y.) 19, no. 4 (April 2013): 329–33. doi:10.1089/acm.2011.0941.

[31] Ulusoy, Seyhan, Gülgün Boşgelmez-Tinaz, and Hale Seçilmiş-Canbay. “Tocopherol, Carotene, Phenolic Contents and Antibacterial Properties of Rose Essential Oil, Hydrosol and Absolute.” Current Microbiology 59, no. 5 (November 2009): 554–58. doi:10.1007/s00284-009-9475-y.

[32] “CFR – Code of Federal Regulations Title 21.” Accessed April 30, 2017. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.20.

[33] Burns, E., C. Blamey, S. J. Ersser, A. J. Lloyd, and L. Barnetson. “The Use of Aromatherapy in Intrapartum Midwifery Practice an Observational Study.” Complementary Therapies in Nursing & Midwifery 6, no. 1 (February 2000): 33–34. doi:10.1054/ctnm.1999.0901.

[34] Ou, Ming-Chiu, Tsung-Fu Hsu, Andrew C. Lai, Yu-Ting Lin, and Chia-Ching Lin. “Pain Relief Assessment by Aromatic Essential Oil Massage on Outpatients with Primary Dysmenorrhea: A Randomized, Double-Blind Clinical Trial.” The Journal of Obstetrics and Gynaecology Research 38, no. 5 (May 2012): 817–22. doi:10.1111/j.1447-0756.2011.01802.x.

[35] Sienkiewicz, Monika, Anna Głowacka, Katarzyna Poznańska-Kurowska, Andrzej Kaszuba, Anna Urbaniak, and Edward Kowalczyk. “The Effect of Clary Sage Oil on Staphylococci Responsible for Wound Infections.” Postepy Dermatologii I Alergologii 32, no. 1 (February 2015): 21–26. doi:10.5114/pdia.2014.40957.

[36] Sienkiewicz, Monika, Anna Głowacka, Katarzyna Poznańska-Kurowska, Andrzej Kaszuba, Anna Urbaniak, and Edward Kowalczyk. “The Effect of Clary Sage Oil on Staphylococci Responsible for Wound Infections.” Postepy Dermatologii I Alergologii 32, no. 1 (February 2015): 21–26. doi:10.5114/pdia.2014.40957.

[37] “CFR – Code of Federal Regulations Title 21.” Accessed April 30, 2017. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.20.

[38] “Essential Oils | Oxford Biosciences.” Accessed April 30, 2017. https://oxfordbiosciences.com/essential-oils/.

[39] Hasanein, Parisa, and Hassan Riahi. “Antinociceptive and Antihyperglycemic Effects of Melissa Officinalis Essential Oil in an Experimental Model of Diabetes.” Medical Principles and Practice: International Journal of the Kuwait University, Health Science Centre 24, no. 1 (2015): 47–52. doi:10.1159/000368755.

[40] Bounihi, Amina, Ghizlane Hajjaj, Rachad Alnamer, Yahia Cherrah, and Amina Zellou. “In Vivo Potential Anti-Inflammatory Activity of Melissa Officinalis L. Essential Oil.” Advances in Pharmacological Sciences 2013 (2013). doi:10.1155/2013/101759.

[41] Hăncianu, Monica, Ana Clara Aprotosoaie, Elvira Gille, Antonia Poiată, Cristina Tuchiluş, A. Spac, and Ursula Stănescu. “Chemical Composition and in Vitro Antimicrobial Activity of Essential Oil of Melissa Officinalis L. from Romania.” Revista Medico-Chirurgicala a Societatii De Medici Si Naturalisti Din Iasi 112, no. 3 (September 2008): 843–47.

[42] Schnitzler, P., A. Schuhmacher, A. Astani, and Jürgen Reichling. “Melissa Officinalis Oil Affects Infectivity of Enveloped Herpesviruses.” Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 15, no. 9 (September 2008): 734–40. doi:10.1016/j.phymed.2008.04.018.

[43] Andrade, Milene Aparecida, Clênia Dos Santos Azevedo, Flávia Nader Motta, Maria Lucília Dos Santos, Camila Lasse Silva, Jaime Martins de Santana, and Izabela M. D. Bastos. “Essential Oils: In Vitro Activity against Leishmania Amazonensis, Cytotoxicity and Chemical Composition.” BMC Complementary and Alternative Medicine 16, no. 1 (November 8, 2016): 444. doi:10.1186/s12906-016-1401-9.

[44] Abdellatif, Fahima, Hadjira Boudjella, Abdelghani Zitouni, and Aicha Hassani. “Chemical Composition and Antimicrobial Activity of the Essential Oil from Leaves of Algerian Melissa Officinalis L.” EXCLI Journal 13 (July 17, 2014): 772–81.

[45] “CFR – Code of Federal Regulations Title 21.” Accessed April 30, 2017. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.20.

DISCLAIMER:-

The medical information on this site is provided as an information resource only, and is not to be used or relied on for any diagnostic or treatment purposes. This information is not intended to be patient education, does not create any patient-practitioner relationship, and should not be used as a substitute for professional diagnosis and treatment.

Please consult your health care provider, or contact the Two Frogs Healing Center for an appointment, before making any healthcare decisions or for guidance about a specific medical condition. The Two Frogs Healing Center expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. The Two Frogs Healing Center does not endorse specifically any test, treatment, or procedure mentioned on the site.

By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by the Two Frogs Healing Center. If you do not agree to the foregoing terms and conditions, you should not enter this site.

Can These Five Remedies Take the Daily Pain Out of Lyme Disease and Co-Infections?

For people with Lyme disease and co-infections that have severe pain due to elevated levels of Substance P in the nervous system

by Greg Lee

When I was a boy, my friends and I would bike to the local novelty store. I would buy the baseball cards and gum. One of my friends would always buy the pranks: plastic bugs, fake vomit, and the garlic flavored candy. One day, he tricked me with a chewing gum pack that had a hidden wire spring. As I took the stick of gum, it snapped on my finger. Yow!

How is chronic pain due to elevated Substance P in people with Lyme and co-infections just like getting your finger caught in a chewing gum prank?

Similar to getting your finger snapped in a chewing gum prank, people with pain syndromes have elevated levels of Substance P
Substance P is a neuropeptide which acts as a neurotransmitter and neuromodulator[1]. It can be found throughout the body. This peptide can activate mast cells to release inflammatory compounds. It is highly correlated with levels of pain in people diagnosed with Fibromyalgia[2], chronic migraines[3], osteoarthritis, rheumatoid arthritis[4], Complex Regional Pain Syndrome (CRPS)[5], Chronic Pelvic Pain Syndrome (CPPS)[6], chronic neck pain[7], inflammatory bowel disease (IBD), irritable bowel syndrome (IBS)[8], chronic degenerative disc disease[9], and carpal tunnel syndrome[10]. Substance P has also been indicated in patients with depression, anxiety[11], brain parasites[12], neuroinflammation[13], inflammation, hepatitis, hepatotoxicity, cholestasis, pruritus, myocarditis, bronchiolitis, abortus, bacteria and viral infections[14]. Unfortunately, Substance P may aggravate neurological problems in people with Lyme disease.

Substance P may aggravate neurological problems in people with Lyme disease
In one animal study, Substance P contributed increases in blood-brain barrier permeability, neurological damage, increased CNS infection, and elevated numbers of microglia/macrophages in mice with a Lyme disease central nervous system (CNS) infection[15]. In another lab study, Substance P aggravated the release of inflammatory compounds COX-2 and PGE(2) in mouse brain cells[16]. Another study suggests that Substance P contributes to CNS inflammation in neurological Lyme disease patients[17]. Substance P is often elevated in electrical frequency scans of Lyme patients that report chronic pain. Medications can help with reducing some Substance P symptoms.

A new type of medication called Neurokinin 1 (NK1) antagonists can help with Substance P symptoms
NK1 antagonists have helped relieve depression, anxiety, and vomiting in patients with elevated levels of Substance P[18]. By modulating serotonin and norepinephrine, they help relieve emotional symptoms. Unfortunately, most studies indicate that NK1 antagonists are not effective at relieving pain caused by elevated levels of Substance P[19]. Many patients use opioid pain relief medications which can have side effects including: constipation, nausea, and addiction.

What else can help relieve chronic pain caused by elevated levels of Substance P in people with Lyme disease?

Here are five remedies for reducing pain caused by elevated Substance P
In human, animal, and lab studies, there are five natural remedies which have pain relieving and anti-inflammatory effects in Substance P pain experiments. By processing remedies into microparticles called liposomes, has enabled remedies to be delivered more effectively into the brain[20] to counteract Substance P’s effects of increased neurological inflammation. Liposomal analgesic medications are more effective at relieving pain than their non-liposomal equivalent[21]. Liposomal remedies have also been effective at reducing the production of inflammatory cytokines in a mouse study[22]. Fortunately, liposomal encapsulation and delivery of essential oils and herbs may enhance their penetration and effectiveness against Substance P pain and neurological inflammation in Lyme patients.

Pain Relieving, Anti-Substance P Remedy #1: Peppermint Essential Oil
Peppermint essential oil was effective at inhibiting Substance P smooth muscle contraction in one animal study[23]. In a human study, peppermint oil combined with ethanol was effective at relieving headache pain[24]. Do not apply peppermint oil undiluted to the feet of children under 12 years old, avoid large doses, it may cause heartburn, perianal burning, blurred vision, nausea and vomiting when taken internally. Peppermint essential oil use is contraindicated in children under 30 months old, and people should avoid the intake of peppermint oil with gallbladder disease, severe liver damage, gallstones, chronic heartburn[25], and cases of cardiac fibrillation and in patients with a G6PD (Glucose-6-Phosphate Dehydrogenase) deficiency[26]. Nutmeg essential oil may also help to reduce Substance P pain.

Pain Relieving, Anti-Substance P Remedy #2: Nutmeg Essential Oil
Nutmeg essential oil was effective at reducing chronic inflammatory pain through inhibition of COX-2 expression and substance P release in one rat study[27]. Maximum daily internal dose for nutmeg oil is 73 mg and 4% topically. In large doses may produce psychotropic effects[28]. Tea tree is another essential oil that may also help to relieve Substance P pain.

Pain Relieving, Anti-Substance P Remedy #3: Tea Tree Essential Oil
In a human skin and rat skin study, tea tree oil and it’s active compounds reduced Substance P induced microvascular changes, histamine, and inflammatory response[29]. In other studies, tea tree oil assists in wound healing and reduces inflammatory compounds[30]. This oil has a low risk of dermal irritation. Maximum safe dermal use is 15%. Caution: high doses, approximately a teaspoon to a half a teacup, of tea tree oil have resulted in ataxia, drowsiness, diarrhea, unconsciousness, and allergic reactions[31]. Angelica sinensis is an herb that may also help to treat pain from elevated Substance P.

Pain Relieving, Anti-Substance P Remedy #4: Angelica Sinensis Herb
In one mouse study, Angelica sinensis reduced levels of Substance P, the number of mast cells, inflammatory cytokines: Interleukin-4 (IL-4), Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and Interferon-gamma (IFN-γ), as well as the expressions of nuclear factor kappa-beta (NF-κB)[32]. This herb has been used for hundreds of years in Chinese medicine for relieving pain, lubricating the intestines, and treating female irregular menstruation and amenorrhea. It has also been used extensively for treating anemia and other blood disorders by tonifying, replenishing, and invigorating blood. A literature review of this herb illustrates the wide range of pharmacological activities, including anti-inflammatory activity, antifibrotic action, antispasmodic activity, antioxidant activities, and neuroprotective action, as well as cardio- and cerebrovascular effects[33].

Angelica is also used to treat coldness, numbness, painful joints, soreness and weakness of the low back and knees. Topically, it is used with other herbs to treat sores and abscesses, reduce swelling, expel pus, relieve pain, and heal slow-healing sores. It unblocks the bowels and is used to treat constipation and dry stools. It has also been used to treat arrhythmia, stroke, migraine, nephritis, upper gastrointestinal bleeding, liver disease, bed wetting, uterine prolapse, insomnia, blocked blood vessels in the hands and feet, herpes zoster, alopecia, psoriasis, dermatological disorders, deafness, anal fissure, chronic hypertropic rhinitis, and chronic pharyngitis[34].

Herb – drug interaction: It is suggested that concurrent use of Angelica with wafarin may potentiate the effects of wafarin, anti-platelet, and anticoagulant drugs. This herb reduces scopolamine and cycloheximide induced amnesia in rats. Angelica also treats acetaminophen-induced liver damage[35]. Another herb called Dragon’s blood may also help to relieve pain from elevated Substance P.

Pain Relieving, Anti-Substance P Remedy #5: Dragon’s Blood Herb
This herb has been used for thousands of years for treating various pains for due to its potent anti-inflammatory and analgesic effects. In one study on rat neurons, this herb demonstrated anti-inflammatory and analgesic effects by blocking the synthesis and release of substance P through inhibition of COX-2 protein induction and intracellular calcium ion concentration[36]. In another animal study, Dragon’s Blood active compounds had a synergistic effect on relieving pain in spinal nerve cells[37]. A combination of herb and essential remedies may help with reducing chronic pain caused by elevated levels of Substance P in people with Lyme disease.

These five remedies may help to reduce chronic pain caused by too much Substance P
People with neurological Lyme disease that also have chronic pain may have elevated levels of Substance P. Similar to not getting your finger snapped in a chewing gum prank, a combination of herbal and essential oil remedies may help to reduce the levels of Substance P, inflammatory cytokines, and chronic pain. These remedies may also help with protecting the brain and nervous system against the damaging and inflammatory effects of Substance P. Processing these herbs and essential oils into microparticle remedies, called liposomes, may enhance their ability to penetrate the blood brain barrier, lower levels of Substance P in the central nervous system, and relieve chronic brain and body pain. Since liposomal remedies requires special knowledge and equipment, work with a Lyme / liposomal literate natural remedy practitioner to develop a customized, safe, and effective treatment plan for your condition.

– Greg

Next step: Come to the Getting Rid of Lyme Disease evening lecture on Monday April 3rd at 6pm in Frederick, Maryland to learn more about essential oils, herbs, and treatments for healing Lyme disease chronic pain, co-infections, and inflammation symptoms.

https://goodbyelyme.com/events/get_rid_lyme

Also learn about effective remedies and treatments for relieving persistent symptoms of Lyme and co-infections including: cold laser, Frequency Specific Microcurrent, cupping, LED therapy, moxabustion, acupuncture, liposomal herbs, essential oils, bee venom, and more!

P.S. Do you have experiences where remedies or treatments helped you to reduce Lyme disease and co-infection chronic pain from elevated levels of Substance P? Tell us about it.


1 “Substance P.” Wikipedia, February 28, 2017. https://en.wikipedia.org/w/index.php
2 Lyon, Pamela, Milton Cohen, and John Quintner. “An Evolutionary Stress-Response Hypothesis for Chronic Widespread Pain (Fibromyalgia Syndrome).” Pain Medicine (Malden, Mass.) 12, no. 8 (August 2011): 1167–78. doi:10.1111/j.1526-4637.2011.01168.x. https://www.ncbi.nlm.nih.gov/pubmed/21692974
3 Jang, M.-U., J.-W. Park, H.-S. Kho, S.-C. Chung, and J.-W. Chung. “Plasma and Saliva Levels of Nerve Growth Factor and Neuropeptides in Chronic Migraine Patients.” Oral Diseases 17, no. 2 (March 2011): 187–93. doi:10.1111/j.1601-0825.2010.01717.x.
https://www.ncbi.nlm.nih.gov/pubmed/20659258
4 Lisowska, Barbara, Aleksander Lisowski, and Katarzyna Siewruk. “Substance P and Chronic Pain in Patients with Chronic Inflammation of Connective Tissue.” PloS One 10, no. 10 (2015): e0139206. doi:10.1371/journal.pone.0139206.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4622041/
5 Wei, Tzuping, Tian-Zhi Guo, Wen-Wu Li, Saiyun Hou, Wade S. Kingery, and John David Clark. “Keratinocyte Expression of Inflammatory Mediators Plays a Crucial Role in Substance P-Induced Acute and Chronic Pain.” Journal of Neuroinflammation 9 (July 23,
2012): 181. doi:10.1186/1742-2094-9-181.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3458986/
6 Ma, Yong, Zu-Long Wang, Zi-Xue Sun, Bo Men, and Bao-Qing Shen. “[Common TCM syndrome pattern of chronic pelvic pain syndrome relates to plasma substance p and beta endorphin].” Zhonghua Nan Ke Xue = National Journal of Andrology 20, no. 4 (April 2014): 363–66. https://www.ncbi.nlm.nih.gov/pubmed/24873166
7 Karlsson, L., B. Gerdle, B. Ghafouri, E. Bäckryd, P. Olausson, N. Ghafouri, and B. Larsson. “Intramuscular Pain Modulatory Substances before and after Exercise in Women with Chronic Neck Pain.” European Journal of Pain (London, England) 19, no. 8 (September 2015): 1075–85. doi:10.1002/ejp.630.
https://www.ncbi.nlm.nih.gov/pubmed/25430591
8 Jarcho, Johanna M., Natasha A. Feier, Alberto Bert, Jennifer A. Labus, Maunoo Lee, Jean Stains, Bahar Ebrat, et al. “Diminished Neurokinin-1 Receptor Availability in Patients with Two Forms of Chronic Visceral Pain.” Pain 154, no. 7 (July 2013): 987–96.
doi:10.1016/j.pain.2013.02.026. https://www.ncbi.nlm.nih.gov/pubmed/23582152
9 Schroeder, Malte, Lennart Viezens, Christian Schaefer, Barbara Friedrichs, Petra Algenstaedt, Wolfgang Rüther, Lothar Wiesner, and Nils Hansen-Algenstaedt. “Chemokine Profile of Disc Degeneration with Acute or Chronic Pain.” Journal of Neurosurgery. Spine 18, no. 5 (May 2013): 496–503. doi:10.3171/2013.1.SPINE12483.
https://www.ncbi.nlm.nih.gov/pubmed/23473344
10 Öztürk, Niyazi, Nuray Erin, and Serdar Tüzüner. “Changes in Tissue Substance P Levels in Patients with Carpal Tunnel Syndrome.” Neurosurgery 67, no. 6 (December 2010): 1655-1660; discussion 1660-1661. doi:10.1227/NEU.0b013e3181fa7032.
https://www.ncbi.nlm.nih.gov/pubmed/21107196
11 Schwarz, Markus J., and Manfred Ackenheil. “The Role of Substance P in Depression: Therapeutic Implications.” Dialogues in Clinical Neuroscience 4, no. 1 (March 2002): 21–29. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3181667/
12 Robinson, Prema, Armandina Garza, Joel Weinstock, Jose A. Serpa, Jerry Clay Goodman, Kristian T. Eckols, Bahrom Firozgary, and David J. Tweardy. “Substance P Causes Seizures in Neurocysticercosis.” PLoS Pathogens 8, no. 2 (February 2012):
e1002489. doi:10.1371/journal.ppat.1002489.
https://www.ncbi.nlm.nih.gov/pubmed/22346746
13 Johnson, M. Brittany, Ada D. Young, and Ian Marriott. “The Therapeutic Potential of Targeting Substance P/NK-1R Interactions in Inflammatory CNS Disorders.” Frontiers in Cellular Neuroscience 10 (2016): 296. doi:10.3389/fncel.2016.00296.
https://www.ncbi.nlm.nih.gov/pubmed/28101005
14 Muñoz, Miguel, and Rafael Coveñas. “Involvement of Substance P and the NK-1 Receptor in Human Pathology.” Amino Acids 46, no. 7 (July 2014): 1727–50. doi:10.1007/s00726-014-1736-9. https://www.ncbi.nlm.nih.gov/pubmed/24705689
15 Johnson, M. Brittany, Ada D. Young, and Ian Marriott. “The Therapeutic Potential of Targeting Substance P/NK-1R Interactions in Inflammatory CNS Disorders.” Frontiers in Cellular Neuroscience 10 (2016): 296. doi:10.3389/fncel.2016.00296.
https://journal.frontiersin.org/…/fncel.2016.00296/full
16 Rasley, Amy, Ian Marriott, Craig R. Halberstadt, Kenneth L. Bost, and Juan Anguita. “Substance P Augments Borrelia Burgdorferi-Induced Prostaglandin E2 Production by Murine Microglia.” Journal of Immunology (Baltimore, Md.: 1950) 172, no. 9 (May 1,
2004): 5707–13. https://www.ncbi.nlm.nih.gov/pubmed/15100316
17 Martinez, Alejandra N., Geeta Ramesh, Mary B. Jacobs, and Mario T. Philipp. “Antagonist of the Neurokinin-1 Receptor Curbs Neuroinflammation in Ex Vivo and in Vitro Models of Lyme Neuroborreliosis.” Journal of Neuroinflammation 12 (December 30,
2015): 243. doi:10.1186/s12974-015-0453-y.
https://www.ncbi.nlm.nih.gov/pubmed/26714480
18 Schwarz, Markus J., and Manfred Ackenheil. “The Role of Substance P in Depression: Therapeutic Implications.” Dialogues in Clinical Neuroscience 4, no. 1 (March 2002): 21–29. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3181667/
19 Diemunsch, P., G. P. Joshi, and J.-F. Brichant. “Neurokinin-1 Receptor Antagonists in the Prevention of Postoperative Nausea and Vomiting.” BJA: British Journal of Anaesthesia 103, no. 1 (July 1, 2009): 7–13. doi:10.1093/bja/aep125.
https://academic.oup.com/bja/article/103/1/7/459585/Neurokinin-1-receptor-antagonistsin-the
20 De Luca, Maria Antonietta, Francesco Lai, Francesco Corrias, Pierluigi Caboni, Zisis Bimpisidis, Elias Maccioni, Anna Maria Fadda, and Gaetano Di Chiara. “Lactoferrin- and Antitransferrin-Modified Liposomes for Brain Targeting of the NK3 Receptor Agonist
Senktide: Preparation and in Vivo Evaluation.” International Journal of Pharmaceutics 479, no. 1 (February 1, 2015): 129–37. doi:10.1016/j.ijpharm.2014.12.057.
https://www.ncbi.nlm.nih.gov/pubmed/25560308
21 Franz-Montan, Michelle, André L. R. Silva, Karina Cogo, Cristiane de C. Bergamaschi, Maria C. Volpato, José Ranali, Eneida de Paula, and Francisco C. Groppo. “Liposome-Encapsulated Ropivacaine for Topical Anesthesia of Human Oral Mucosa.” Anesthesia and Analgesia 104, no. 6 (June 2007): 1528–1531, table of contents. doi:10.1213/01.ane.0000262040.19721.26.
https://www.ncbi.nlm.nih.gov/pubmed/17513653
22 Thamphiwatana, Soracha, Weiwei Gao, Marygorret Obonyo, and Liangfang Zhang. “In Vivo Treatment of Helicobacter Pylori Infection with Liposomal Linolenic Acid Reduces Colonization and Ameliorates Inflammation.” Proceedings of the National Academy of Sciences of the United States of America 111, no. 49 (December 9, 2014):
17600–605. doi:10.1073/pnas.1418230111.
https://www.ncbi.nlm.nih.gov/pubmed/25422427
23 Hills, J. M., and P. I. Aaronson. “The Mechanism of Action of Peppermint Oil on Gastrointestinal Smooth Muscle. An Analysis Using Patch Clamp Electrophysiology and Isolated Tissue Pharmacology in Rabbit and Guinea Pig.” Gastroenterology 101, no. 1 (July 1991): 55–65. https://www.ncbi.nlm.nih.gov/pubmed/1646142
24 Göbel, H., G. Schmidt, M. Dworschak, H. Stolze, and D. Heuss. “Essential Plant Oils and Headache Mechanisms.” Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 2, no. 2 (October 1995): 93–102. doi:10.1016/S0944-7113(11)80053-X.
https://www.sciencedirect.com/…/pii/S094471131180053X
25 “Peppermint Safety Info | National Association for Holistic Aromatherapy.” Accessed April 1, 2017. https://naha.org/naha-blog/peppermint-safety-info/.
26 Tisserand, Robert, and Rodney Young. Essential Oil Safety: A Guide for Health Care Professionals. 2 edition. Edinburgh: Churchill Livingstone, 2013. https://www.amazon.com/Essential-Oil-Safety…/dp/0443062412
27 Zhang, Wei Kevin, Shan-Shan Tao, Ting-Ting Li, Yu-Sang Li, Xiao-Jun Li, He-Bin Tang, Ren-Huai Cong, Fang-Li Ma, and Chu-Jun Wan. “Nutmeg Oil Alleviates Chronic Inflammatory Pain through Inhibition of COX-2 Expression and Substance P Release in Vivo.” Food & Nutrition Research 60 (April 26, 2016). doi:10.3402/fnr.v60.30849.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848392/
28 Tisserand, Robert, and Rodney Young. Essential Oil Safety: A Guide for Health Care Professionals. 2 edition. Edinburgh: Churchill Livingstone, 2013.
29 Khalil, Zeinab, Annette L. Pearce, Narmatha Satkunanathan, Emma Storer, John J. Finlay-Jones, and Prue H. Hart. “Regulation of Wheal and Flare by Tea Tree Oil: Complementary Human and Rodent Studies.” The Journal of Investigative Dermatology 123, no. 4 (October 2004): 683–90. doi:10.1111/j.0022-202X.2004.23407.x.
https://www.ncbi.nlm.nih.gov/pubmed/15373773
30 Khalil, Zeinab, Annette L. Pearce, Narmatha Satkunanathan, Emma Storer, John J. Finlay-Jones, and Prue H. Hart. “Regulation of Wheal and Flare by Tea Tree Oil: Complementary Human and Rodent Studies.” The Journal of Investigative Dermatology 123, no. 4 (October 2004): 683–90. doi:10.1111/j.0022-202X.2004.23407.x.
https://www.jidonline.org/…/S0022-202X(15)30988-X/abstract
31 Tisserand, Robert, and Rodney Young. Essential Oil Safety: A Guide for Health Care Professionals. 2 edition. Edinburgh: Churchill Livingstone, 2013.
32 Lee, Jaehong, You Yeon Choi, Mi Hye Kim, Jae Min Han, Ji Eun Lee, Eun Hye Kim, Jongki Hong, Jinju Kim, and Woong Mo Yang. “Topical Application of Angelica Sinensis Improves Pruritus and Skin Inflammation in Mice with Atopic Dermatitis-Like Symptoms.” Journal of Medicinal Food 19, no. 1 (January 2016): 98–105. doi:10.1089/jmf.2015.3489.
https://www.ncbi.nlm.nih.gov/pubmed/26305727
33 Wei, Wen-Long, Rui Zeng, Cai-Mei Gu, Yan Qu, and Lin-Fang Huang. “Angelica Sinensis in China-A Review of Botanical Profile, Ethnopharmacology, Phytochemistry and Chemical Analysis.” Journal of Ethnopharmacology 190 (August 22, 2016): 116–41. doi:10.1016/j.jep.2016.05.023. https://www.ncbi.nlm.nih.gov/pubmed/27211015
34 Chen, John K., and Tina T. Chen. 2004. Chinese Medical Herbology and
Pharmacology. City of Industry CA: Art of Medicine Press, Inc., pp. 918 – 924.
35 Chen, John K., and Tina T. Chen. 2004. Chinese Medical Herbology and
Pharmacology. City of Industry CA: Art of Medicine Press, Inc., pp. 918 – 924.
36 Li, Yu-Sang, Jun-Xian Wang, Mei-Mei Jia, Min Liu, Xiao-Jun Li, and He-Bin Tang. “Dragon’s Blood Inhibits Chronic Inflammatory and Neuropathic Pain Responses by Blocking the Synthesis and Release of Substance P in Rats.” Journal of Pharmacological Sciences 118, no. 1 (2012): 43–54.
https://www.ncbi.nlm.nih.gov/pubmed/22198006
37 Guo, Min, Su Chen, and Xiangming Liu. “Material Basis for Inhibition of Dragon’s Blood on Evoked Discharges of Wide Dynamic Range Neurons in Spinal Dorsal Horn of Rats.” Science in China. Series C, Life Sciences 51, no. 11 (November 2008): 1025–38. doi:10.1007/s11427-008-0133-6. https://www.ncbi.nlm.nih.gov/pubmed/18989646


DISCLAIMER:-

The medical information on this site is provided as an information resource only, and is not to be used or relied on for any diagnostic or treatment purposes. This information is not intended to be patient education, does not create any patient-practitioner relationship, and should not be used as a substitute for professional diagnosis and treatment.

Please consult your health care provider, or contact the Two Frogs Healing Center for an appointment, before making any healthcare decisions or for guidance about a specific medical condition. The Two Frogs Healing Center expressly disclaims responsibility, and shall have no liability, for any damages, loss, injury, or liability whatsoever suffered as a result of your reliance on the information contained in this site. The Two Frogs Healing Center does not endorse specifically any test, treatment, or procedure mentioned on the site.

By visiting this site you agree to the foregoing terms and conditions, which may from time to time be changed or supplemented by the Two Frogs Healing Center. If you do not agree to the foregoing terms and conditions, you should not enter this site.